National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Surface-enhanced Raman spectral detection of bilirubin and temporally synchronized monitoring of its photochemical transformations in selected solvents by SERS and electronic absorption spectroscopy
Hrnčířová, Jana ; Vlčková, Blanka (advisor) ; Procházka, Marek (referee)
Surface-enhanced Raman scattering (SERS)-active systems based on macroscopic Ag nanosponge aggregates as well as the conditions of SERS spectral measurements were optimized for selective and sensitive detection of a biomedically important, amphiphilic bile pigment bilirubin (BR) in alkaline aqueous solutions and in its solutions in a selected water miscible solvent, namely dimethylsulfoxide (DMSO) and/or water-immiscible solvent, namely CH2Cl2. Ag nanosponges assembled by using HCl as a pre-aggregation agent were found to be the optimal SERS-active systems for a reliable detection of BR in all the above-mentioned solvents. In all cases, the protonated form of adsorbed BR has been detected upon BR incorporation into Ag nanosponges, and its marker bands have been established by SERS spectral probing at excitation wavelengths in the 445-780 nm range. The sensitivity of SERS spectral detection was evaluated in terms of the concentration values of SERS spectral detection limits (SERS LODs) of BR incorporated into Ag nanosponges. In particular, the SERS LOD for BR incorporated from its alkaline aqueous solution is 1 x 10-8 M (at 532 nm excitation), for BR incorporated from its solution in DMSO, its value is also 1 x 10-8 M (at 532 and/or 633 nm excitations), and for incorporation from the solution of BR...
Surface-enhanced Raman spectral detection of bilirubin and temporally synchronized monitoring of its photochemical transformations in selected solvents by SERS and electronic absorption spectroscopy
Hrnčířová, Jana ; Vlčková, Blanka (advisor) ; Procházka, Marek (referee)
Surface-enhanced Raman scattering (SERS)-active systems based on macroscopic Ag nanosponge aggregates as well as the conditions of SERS spectral measurements were optimized for selective and sensitive detection of a biomedically important, amphiphilic bile pigment bilirubin (BR) in alkaline aqueous solutions and in its solutions in a selected water miscible solvent, namely dimethylsulfoxide (DMSO) and/or water-immiscible solvent, namely CH2Cl2. Ag nanosponges assembled by using HCl as a pre-aggregation agent were found to be the optimal SERS-active systems for a reliable detection of BR in all the above-mentioned solvents. In all cases, the protonated form of adsorbed BR has been detected upon BR incorporation into Ag nanosponges, and its marker bands have been established by SERS spectral probing at excitation wavelengths in the 445-780 nm range. The sensitivity of SERS spectral detection was evaluated in terms of the concentration values of SERS spectral detection limits (SERS LODs) of BR incorporated into Ag nanosponges. In particular, the SERS LOD for BR incorporated from its alkaline aqueous solution is 1 x 10-8 M (at 532 nm excitation), for BR incorporated from its solution in DMSO, its value is also 1 x 10-8 M (at 532 and/or 633 nm excitations), and for incorporation from the solution of BR...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.